Skip to content

Favell, G.; McNeil, J.N.; Donly, C. Insects 2020, 11, 135.

The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a significant agricultural pest that has developed resistance to many insecticides that are used to control it. Investigating the mechanisms of insecticide detoxification in this pest is important for ensuring its continued control, since they may be contributors to such resistance. Multidrug resistance (MDR) genes that code for the ABCB transmembrane efflux transporters are one potential source of insecticide detoxification activity that have not been thoroughly examined in L. decemlineata. In this study, we annotated the ABCB genes found in the L. decemlineata genome and then characterized the expression profiles across midgut, nerve, and Malpighian tubule tissues of the three full transporters identified. To investigate if these genes are involved in defense against the macrocyclic lactone insecticide ivermectin in this insect, each gene was silenced using RNA interference or MDR protein activity was inhibited using a chemical inhibitor, verapamil, before challenging the insects with a dose of ivermectin. Survival of the insects did not significantly change due to gene silencing or protein inhibition, suggesting that MDR transporters do not significantly contribute to defense against ivermectin in L. decemlineata.

Skuhrovec, J., O. Douda, M. Zouhar, M. Maňasová, M. Božik, and P. Klouček. Journal of Economic Entomology, toz279, https://doi.org/10.1093/jee/toz279

The Colorado potato beetle ranks as one of the most important potato pests, mainly due to its high feeding rate during all developmental stages, particularly third and fourth larval instar, and high fecundity. The effect of essential oil (EO) from anise (Pimpinella anisum L. [Apiales: Apiaceae]) prepared as conventional and encapsulated (EN) formulations on the mortality and antifeedant responses of young larvae of Colorado potato beetles was studied to evaluate the insecticidal and antifeedant effects of five concentrations of this EO and to assess the persistence of both formulations on potato plants. The EN formulation had a significantly higher residual amount compared with that of the conventionally formulated EO. Significantly different values of LC50 and LC90 (ppm) were established for the EO (LC50 = 1,700 and LC90 = 9500) and EN (LC50 = 3,100 and LC90 = 14,300) formulations. The effects of both P. anisum formulations (EO and EN) applied topically to Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) larvae were distinctly different from those observed with the contact treatment. At the highest concentration of 20,000 ppm, the mortality of the second instars of the L. decemlineata larvae did not exceed 25%. On the other hand, both tested formulations of P. anisum were highly effective when administered orally. The encapsulated EO formulation achieved a distinctly higher biological activity. Our results confirm that the EO from P. anisum, especially the encapsulated formulation, has high insecticidal properties that may lead to the development of new organic products for the control of Colorado potato beetles.

Dumas, P. , M. Sambou , J. D. Gaudet , M. D. Morin , C. E. Moffat , S. Boquel , P. Morin. Archives of Insect Biochemistry and Physiology https://doi.org/10.1002/arch.21642

The Colorado potato beetle (Leptinotarsa decemlineata [Say]) is an insect pest that can significantly harm potato plants worldwide. Control of this insect relies heavily on chemical insecticides such as chlorantraniliprole. Nevertheless, the complete molecular signature associated with response to this compound is lacking in L. decemlineata. In this study, amplification and quantification by qRT‐PCR (quantitative reverse transcription‐polymerase chain reaction) of targets relevant to chlorantraniliprole were undertaken in insects exposed to this chemical. This approach showed modulation of numerous cytochrome P450s, such as CYP350D1 and CYP4Q3, as well as upregulation of microRNAs (miRNAs), including miR‐1‐3p and miR‐305‐5p, in chlorantraniliprole‐exposed insects. Functional assessment of transcript targets predicted to be regulated by these miRNAs was performed and revealed their likely impact on transcriptional regulation. RNAi‐based targeting of CYP350D1 notably provided preliminary evidence of its underlying implication for chlorantraniliprole response in L. decemlineata. Overall, this study strengthens the current knowledge of the molecular changes linked to chlorantraniliprole response in L. decemlineata and provides novel targets with potential relevance to chlorantraniliprole susceptibility in this insect pest of global relevance.

Margus, A., Piiroinen, S., Lehmann, P. et al. Scientific Reports 9, 11320 (2019) doi:10.1038/s41598-019-47473-1

Stress tolerance and adaptation to stress are known to facilitate species invasions. Many invasive species are also pests and insecticides are used to control them, which could shape their overall tolerance to stress. It is well-known that heavy insecticide usage leads to selection of resistant genotypes but less is known about potential effects of mild sublethal insecticide usage. We studied whether stressful, sublethal pyrethroid insecticide exposure has within-generational and/or maternal transgenerational effects on fitness-related traits in the Colorado potato beetle (Leptinotarsa decemlineata) and whether maternal insecticide exposure affects insecticide tolerance of offspring. Sublethal insecticide stress exposure had positive within-and transgenerational effects. Insecticide-stressed larvae had higher adult survival and higher adult body mass than those not exposed to stress. Furthermore, offspring whose mothers were exposed to insecticide stress had higher larval and pupal survival and were heavier as adults (only females) than those descending from control mothers. Maternal insecticide stress did not explain differences in lipid content of the offspring. To conclude, stressful insecticide exposure has positive transgenerational fitness effects in the offspring. Therefore, unsuccessful insecticide control of invasive pest species may lead to undesired side effects since survival and higher body mass are known to facilitate population growth and invasion success.

Xu, Q.-Y., Q.-W. Meng, P. Deng, K.-Y. Fu, W.-C. Guo, and G.-Q. Li. Bulletin of Entomological Research https://doi.org/10.1017/S0007485318001050

Dietary delivery of bacterially expressed double-stranded RNA (dsRNA) has a great potential for management of Leptinotarsa decemlineata. An important first step is to discover possible RNA-interference (RNAi)-target genes effective against larvae, especially the old larvae. In the present paper, five putative Broad-Complex (BrC) cDNAs (Z1-Z4, and Z6) were identified in L. decemlineata. The expression of the five LdBrC isoforms was suppressed by juvenile hormone signaling, whereas the transcription was upregulated by 20-hydroxyecdysone signaling at the fourth (final) instar larval stage. Feeding of bacterially expressed dsBrC (derived from a common fragment of the five LdBrC variants) in the third- and fourth-instar larvae successfully knocked down the target mRNAs. For the fourth-instar LdBrC RNAi hypomorphs, they had a higher larval mortality compared with the controls. Moreover, most dsBrC-fed beetles did not pupate normally. After removal of the apolysed larval cuticle, a miniature adult was found. The adult head, compound eyes, prothorax, mesothorax, metathorax were found on the dorsal view. Distinct adult cuticle pigmentation was seen on the prothorax. The mouthparts, forelegs, midlegs, and hindlegs could be observed on the ventral view of the miniature adults. For the third-instar LdBrC RNAi specimens, around 20% moribund beetles remained as prepupae and finally died. Therefore, LdBrC is among the most attractive candidate genes for RNAi to control the fourth-instar larvae in L. decemlineata.

Naqqash, M. N., A. Gökçe, E. Aksoy, A. Bakhsh. Chemosphere, https://doi.org/10.1016/j.chemosphere.2019.124857

Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), is the important pest of potato all over the world. This insect pest is resistant to more than 50 active compounds belonging to various chemical groups. Potential of RNA interference (RNAi) was explored to knock down transcript levels of imidacloprid resistant genes in Colorado potato beetle (CPB) under laboratory conditions. Three important genes belonging to cuticular protein (CP), cytochrome P450 monoxygenases (P450) and glutathione synthetase (GSS) families encoding imidacloprid resistance were targeted. Feeding bio-assays were conducted on various stages of imidacloprid resistant CPB lab population by applying HT115 expressing dsRNA on potato leaflets. Survival rate of insects exposed to CP-dsRNA decreased to 4.23%, 15.32% and 47.35% in 2nd, 3rd and 4th instar larvae respectively. Larval weight and pre-adult duration were also affected due to dsRNAs feeding. Synergism of RNAi with imidacloprid conducted on the 2nd instar larvae, exhibited 100% mortality of larvae when subjected to reduced doses of GSS and CP dsRNAs along with imidacloprid. Utilization of three different dsRNAs against imidacloprid resistant CPB population reveal that dsRNAs targeting CP, P450 and GSS enzymes could be useful tool in management of imidacloprid resistant CPB populations.

García-Robles, I., De Loma, J., Capilla, M., Roger, I., Boix-Montesinos, P., Carrión, P., Vicente, M., López-Galiano, MJ, Real, MD, Rausell, C. Developmental & Comparative Immunology DOI: 10.1016/j.dci.2019.103525

Bacillus thuringiensis (Bt) toxins constitute effective, environmentally safe biopesticides. Nevertheless, insects' tolerance to Bt is influenced by environmental factors affecting immunity. To understand larval immune response in the devastating coleopteran insect pest Colorado potato beetle (CPB), we undertook a proteomic analysis of hemolymph of non-treated control larvae and larvae consuming non-lethal doses of spore-crystal mixtures containing the coleopteran-active Cry3Aa toxin. Results revealed lower amount of proteins involved in insect growth and higher amount of immune response-related proteins in challenged insects, sustaining the larval weight loss observed. Additionally, we found a potential regulatory role of the evolutionary conserved miR-8 in the insect's immune response relying on antimicrobial peptides (AMPs) production. Upon toxin challenge, different patterns of hemolymph AMPs expression and phenoloxidase activity were observed in CPB larvae reared on different Solanaceae plants. This suggests that diet and diet-associated insect midgut microbiota might modulate this insects' tolerance to non-lethal doses of Bt.

Kryukov VY, Tomilova OG, Luzina OA, et al. Pest Manag Sci. 2018;74(3):598-606.

BACKGROUND: The search for compounds that interact synergistically with entomopathogenic fungi is aimed at enhancing the efficacy and stability of biological products against pest insects, for example, against the Colorado potato beetle (CPB). We hypothesized that fluorine-containing derivatives of usnic acid (FUA) might be candidates for the development of multicomponent bio-insecticides. The aim of this study was to analyze the co-influence of FUA and Beauveria bassiana on the survival and immune-physiological reactions of CPB larvae. RESULTS: Synergy between FUA and B. bassiana was observed after treatment of second, third and fourth larvae instars under laboratory conditions. Furthermore, synergy was observed in field trials in continental climate conditions in southeastern Kazakhstan. In a field experiment, the median lethal time was shortened three-fold, and cumulative mortality for 15 days increased by 36% in the combined treatment compared with a fungal infection alone. FUA treatment delayed larval development, decreased the total hemocyte count, and increased both the phenoloxidase activity in integuments and the detoxification enzyme rate in hemolymph. A combined treatment with fungus and FUA led to increases in the aforementioned changes. CONCLUSION: Toxicosis caused by FUA provides a stable synergistic effect between FUA and B. bassiana. The combination can be promising for the development of highly efficient products against CPB.

Crossley MS, Rondon SI, Schoville SD. American Journal of Potato Research. 2018;95(5):495-503. doi: 10.1007/s12230-018-9654-0.

The Colorado potato beetle, Leptinotarsa decemlineata Say, is a serious pest of potato, Solanum tuberosum L., worldwide. Leptinotarsa decemlineata has a history of repeated adaptation to insecticides, and exhibits a geographic pattern of decreasing insecticide resistance from east to west in the USA. Imidacloprid is one of the most widely used insecticide in western states. In this study, we measured imidacloprid resistance among larval and adult L. decemlineata from ten locations in the Columbia Basin (southeastern Washington and northeastern Oregon) using topical LD50 bioassays, and compared them to estimates from ten locations in Minnesota and Wisconsin. Larval and adult imidacloprid LD50's and mean percent mortality were generally lowest in Washington and Oregon, but some sites exhibited reductions in mortality comparable to those observed at some Wisconsin sites. Adult LD50's suggest L. decemlineata in the Columbia Basin may be evolving in response to selection by neonicotinoid insecticides, but larval data suggest high susceptibility to imidacloprid remains in most populations. Future work should expand resistance monitoring efforts to include more regions in the West and other insecticide modes of action.

Meng, Q.W., J.J. Wang, J.F. Shi, W.C. Guo, and G.Q. Li. 2018. American Journal of Potato Research. 95(5):463-472. doi: 10.1007/s12230-018-9646-0.

The potential of teflubenzuron was assessed in a series of laboratory studies in order to achieve consistent, long-term, integrated management of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Teflubenzuron exhibited excellent stomach toxicity to the larvae. Its larvicidal activity was comparable with those of cyhalothrin, chlorantraniliprole and spinosad. Moreover, the teflubenzuron-fed larvae consumed less foliage, grew slower, and needed a longer period to develop, in a dose dependent manner. Most of these larvae died during larval-larval molting, larval-pupal ecdysis or adult emergence. Furthermore, chitin contents in body carcass (without midgut) and integument specimen of the teflubenzuron-fed larvae significantly decreased, whereas the chitin amount in the midgut peritrophic matrix was not affected. In addition, uridine diphosphate-N-acetylglucosamine-pyrophosphorylase gene (LdUAP1), which was mainly responsible for chitin biosynthesis in ectodermally-derived tissues, was suppressed after teflubenzuron ingestion, in contrast to its partner LdUAP2 for chitin formation in the midgut peritrophic matrix. In a word, by inhibition of chitin production in ectodermally-derived tissues, teflubenzuron is an effective benzoylurea insecticide to L. decemlineata larvae. It can be a valuable tool in effective integrated pest management and insecticide resistance management programs against L. decemlineata.