Tajmiri P, Fathi SAA, Golizadeh A, Nouri-Ganbalani G. Int J Pest Manage. 2017;63(4):273-279.

Intercropping systems are practiced to reducing pest density, enhancing predator's diversity and stabling crop yield. We evaluated the effect of strip-intercropping potato and annual alfalfa on populations of Leptinotarsa decemlineata (Say), predator's biodiversity and potato yield over two seasons (2014 and 2015). Our results revealed that the densities of egg masses, eggs, larvae and adults of Colorado potato beetle (CPB) were significantly lower in intercrops than in monoculture. The main CPB predators recorded on potato plants (ladybirds and the green lacewing) showed a significant increase in the density at each of the three intercrops than in monoculture. The percentage of dry tubers weight loss was 40.9%-42.6% in monoculture, 16.3%-18.7% in 6P: 2A and <10% in 2P: 2A and 4P: 2A in two studied years. Our results suggest that strip-intercropping potato with annual alfalfa, particularly in 2P: 2A and 4P: 2A patterns may be an effective way in integrated management of CPB for reducing pest density, enhancing the presence of predators in potato fields and improving potato yield.

Morin MD, Frigault JJ, Lyons PJ, et al. Insect Mol Biol. 2017;26(5):574-583. doi: 10.1111/imb.12320.

The Colorado potato beetle [Leptinotarsa decemlineata (Say)] is an important insect pest that can inflict considerable damage to potato plants. This insect can survive extended periods of cold exposure, and yet the molecular switches underlying this phenomenon have not been fully elucidated. A better characterization of this process would highlight novel vulnerabilities associated with L. decemlineata that could serve as targets for the management of this devastating pest. Using high-throughput sequencing, the current work reveals a cold-associated signature group of microRNAs (miRNAs) in control (15°C) and -5°C-exposed L. decemlineata. The results show 42 differentially expressed miRNAs following cold exposure including miR-9a-3p, miR-210-3p, miR-276-5p and miR-277-3p. Functional analysis of predicted targets associated with these cold-responsive miRNAs notably linked these changes with vital metabolic and cellular processes. Overall, this study highlights the miRNAs probably responsible for facilitating cold adaptation in L. decemlineata and implicates miRNAs as a key molecular target to consider in the development of novel pest management strategies against these insects.

Hermann SL, Thaler JS. Oecologia. 2018;188(4):945-952. doi: 10.1007/s00442-018-4202-7.

Predator-prey interactions primarily focus on prey life-stages that are consumed. However, animals in less vulnerable life-stages might also be influenced by the presence of a predator, making our understanding of predation-related impacts across all life-stages of prey essential. It has been previously demonstrated that Podisus maculiventris is a voracious predator of eggs and larvae of Leptinotarsa decemlineata, and that larvae will alter their behavior to avoid predation. However, the adult beetles are not readily consumed by P. maculiventris, raising the question of whether they will respond to predators to protect themselves or their offspring. Here, we examine the effect of predation risk by P. maculiventris, on three adult behaviors of L. decemlineata; colonization, oviposition, and feeding, and the resulting impact on host plant damage. In an open-field test, there was no difference in natural beetle colonization between plots with predation risk and control treatments. However, subsequent host plant damage by adult beetles was 63.9% less in predation risk treatments. Over the lifetime of adult beetles in field mesocosms, per capita feeding was 23% less in the predation risk treatment. Beetle oviposition was 37% less in the presence of predators in a short-term, greenhouse assay, and marginally reduced in longer term field mesocosms. Our results indicate that predation risk can drive relatively invulnerable adult herbivores to adjust behaviors that affect themselves (feeding) and their offspring (oviposition). Thus, the full impact of predator presence must be considered across the prey life cycle.

Clements J, Sanchez-Sedillo B, Bradfield CA, Groves RL. PLoS ONE. 2018;13(10):e0205881. doi: 10.1371/journal.pone.0205881.

The Colorado potato beetle, Leptinotarsa decemlineata (Say), is an agricultural pest of commercial potatoes in parts of North America, Europe, and Asia. Plant protection strategies within this geographic range employ a variety of pesticides to combat not only the insect, but also plant pathogens. Previous research has shown that field populations of Leptinotarsa decemlineata have a chronological history of resistance development to a suite of insecticides, including the Group 4A neonicotinoids. The aim of this study is to contextualize the transcriptomic response of Leptinotarsa decemlineata when exposed to the neonicotinoid insecticide imidacloprid, or the fungicides boscalid or chlorothalonil, in order to determine whether these compounds induce similar detoxification mechanisms. We found that chlorothalonil and imidacloprid induced similar patterns of transcript expression, including the up-regulation of a cytochrome p450 and a UDP-glucuronosyltransferase transcript, which belong to protein families associated with xenobiotic metabolism. Further, transcriptomic responses varied among individuals within the same treatment group, suggesting individual insects' responses vary within a population and may cope with chemical stressors in a variety of manners.

Ruiz-Arroyo V, García-Robles I, Ochoa-Campuzano C, et al. Insect Mol Biol. 2017;26(2):204-214. doi: 10.1111/imb.12285.

Bacillus thuringiensis parasporal crystal proteins (Cry proteins) are insecticidal pore-forming toxins that bind to specific receptor molecules on the brush border membrane of susceptible insect midgut cells to exert their toxic action. In the Colorado potato beetle (CPB), a coleopteran pest, we previously proposed that interaction of Cry3Aa toxin with a CPB ADAM10 metalloprotease is an essential part of the mode of action of this toxin. Here, we annotated the gene sequence encoding an ADAM10 metalloprotease protein (CPB-ADAM10) in the CPB genome sequencing project, and using RNA interference gene silencing we demonstrated that CPB-ADAM10 is a Cry3Aa toxin functional receptor in CPB. Cry3Aa toxicity was significantly lower in CPB-ADAM10 silenced larvae and in vitro toxin pore-forming ability was greatly diminished in lipid planar bilayers fused with CPB brush border membrane vesicles (BBMVs) prepared from CPB-ADAM10 silenced larvae. In accordance with our previous data that indicated this toxin was a substrate of ADAM10 in CPB, Cry3Aa toxin membrane-associated proteolysis was altered when CPB BBMVs lacked ADAM10. The functional validation of CPB-ADAM10 as a Cry3Aa toxin receptor in CPB expands the already recognized role of ADAM10 as a pathogenicity determinant of pore-forming toxins in humans to an invertebrate species.

Wraight SP, Ramos ME. Biocontrol Sci Technol. 2017;27(3):348-363. doi: 10.1080/09583157.2017.1291904.

The effects of inoculation method on efficacy of two formulations of Beauveria bassiana strain GHA against Colorado potato beetle larvae were investigated. Under dry greenhouse conditions, ca. 58% mortality was observed among second-instar larvae exposed directly to sprays of B. bassiana conidia, whereas mortality among larvae exposed to similarly treated foliage (either leaf dorsal or ventral surfaces) was <10%. Mortality was ca. 64% among larvae exposed to both direct sprays and foliar spray deposits. Equivalent rates of mortality were observed among larvae treated with a clay-based wettable powder versus an emulsifiable oil-based formulation of B. bassiana conidia; however, this was observed despite application of an approximately 40% greater dose of WP-formulated conidia, indicating greater efficacy of the emulsifiable oil formulation. These results suggest that, under dry conditions, potato beetle larvae do not readily acquire an effective dose of conidia from treated foliage and that development of improved application technologies to more effectively target the larvae may ultimately prove more beneficial than development of formulations with greater foliar persistence.

Gaddelapati SC, Kalsi M, Roy A, Palli SR. Insect Biochem Mol Biol. 2018;99:54-62. doi: 10.1016/j.ibmb.2018.05.006.

The Colorado potato beetle (CPB), Leptinotarsa decemlineata developed resistance to imidacloprid after exposure to this insecticide for multiple generations. Our previous studies showed that xenobiotic transcription factor, cap 'n' collar isoform C (CncC) regulates the expression of multiple cytochrome P450 genes, which play essential roles in resistance to plant allelochemicals and insecticides. In this study, we sought to obtain a comprehensive picture of the genes regulated by CncC in imidacloprid-resistant CPB. We performed sequencing of RNA isolated from imidacloprid-resistant CPB treated with dsRNA targeting CncC or gene coding for green fluorescent protein (control). Comparative transcriptome analysis showed that CncC regulated the expression of 1798 genes, out of which 1499 genes were downregulated in CncC knockdown beetles. Interestingly, expression of 79% of imidacloprid induced P450 genes requires CncC. We performed quantitative real-time PCR to verify the reduction in the expression of 20 genes including those coding for detoxification enzymes (P450s, glutathione S-transferases, and esterases) and ABC transporters. The genes coding for ABC transporters are induced in insecticide resistant CPB and require CncC for their expression. Knockdown of genes coding for ABC transporters simultaneously or individually caused an increase in imidacloprid-induced mortality in resistant beetles confirming their contribution to insecticide resistance. These studies identified CncC as a transcription factor involved in regulation of genes responsible for imidacloprid resistance. Small molecule inhibitors of CncC or suppression of CncC by RNAi could provide effective synergists for pest control or management of insecticide resistance.

Clements J, Schoville S, Clements N, Chapman S, Groves RL. Pest Manag Sci. 2017;73(3):641-650. doi: 10.1002/ps.4480.

BACKGROUND: The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a major agricultural pest of commercial potatoes. Pest managers use a combination of control tactics to limit populations, including multiple insecticides. Finding a window of insecticide susceptibility and understanding genetic responses to insecticide exposure during a growing season may provide novel management recommendations for L. decemlineata. RESULTS: We examined temporal changes (during one growing season) in phenotypic response between a susceptible population and an imidacloprid-resistant population. Beetles remained more susceptible to imidacloprid in the susceptible population throughout the growing season. Estimated mean LC50 values varied throughout the growing season in the resistant population, with increased susceptibility among overwintered and recently emerged adult beetles compared with a heightened level of resistance in the second generation. RNA transcript abundance was compared among multiple time points through the growing season, showing that cuticular proteins and cytochrome p450s were highly upregulated during peaks of measured resistance. CONCLUSION: Temporal variation in imidacloprid susceptibility of L. decemlineata was observed, which included early time points of susceptibility and later peaks in resistance. Heightened resistance occurred during the second generation and correlated to increased transcript abundance of multiple mechanisms of resistance, including multiple cuticular protein and cytochrome p450 transcripts.

Weintraub R, Garrido E, Poveda K. American Journal of Potato Research. 2018;95(6):642-649. doi: 10.1007/s12230-018-9670-0.

Tolerance is a type of defense that allows plants to attenuate the negative effects of herbivory. Tolerance has been shown to be context-dependent, contingent on abiotic and biotic factors such as nutrients and plant age. Here, we determine the simultaneous effect of herbivory at different phenological stages and nitrogen regimen on the potato's ability to tolerate herbivory. We subjected young and blooming plants of two potato varieties to 50% injury by Colorado Potato Beetle in low and high nitrogen environments to determine their effects on tuber yield and plant tolerance. All plants in the high nitrogen treatment expressed higher yield and tolerance compared to those in the low nitrogen treatment. Control plants expressed higher yield than plants in either herbivory treatment. There was a variety by phenological stage of herbivory interaction showing that phenological-based tolerance expression within species is genotype dependent.

Meng Q, Q Xu, T Zhu, L Jin, K Fu, W Guo, G Li. PLoS Genetics. 2019;15(1):e1007423. doi: 10.1371/journal.pgen.1007423.

Many animals exploit several niches sequentially during their life cycles, a fitness referred to as ontogenetic niche shift (ONS). To successfully accomplish ONS, transition between development stages is often coupled with changes in one or more primitive, instinctive behaviors. Yet, the underlining molecular mechanisms remain elusive. We show here that Leptinotarsa decemlineata larvae finish their ONS at the wandering stage by leaving the plant and pupating in soil. At middle wandering phase, larvae also switch their phototactic behavior, from photophilic at foraging period to photophobic. We find that enhancement of juvenile hormone (JH) signal delays the phototactic switch, and vise verse. Moreover, RNA interference (RNAi)-aided knockdown of LdPTTH (prothoracicotropic hormone gene) or LdTorso (PTTH receptor gene) impairs avoidance response to light, a phenotype nonrescuable by 20-hydroxyecdysone. Consequently, the RNAi beetles pupate at the soil surface or in shallow layer of soil, with most of them failing to construct pupation chambers. Furthermore, a combination of depletion of LdPTTH/LdTorso and disturbance of JH signal causes no additive effects on light avoidance response and pupation site selection. Finally, we establish that TrpA1 (transient receptor potential (TRP) cation channel) is necessary for light avoidance behavior, acting downstream of PTTH. We conclude that JH/PTTH cascade concomitantly regulates metamorphosis and the phototaxis switch, to drive ONS of the wandering beetles from plant into soil to start the immobile pupal stage.