Rainio MJ, Margus A, Lehmann P, Helander M, Lindström L. Comparative Biochemistry and Physiology C, Toxicology & Pharmacology. 2019;215:47-55. doi: 10.1016/j.cbpc.2018.09.005.

Glyphosate is the globally most used herbicide against a wide range of weeds. Glyphosate has been considered safe to animals as it mainly targets physiological pathways in plants. However, recent toxicological studies have revealed that glyphosate can cause various toxic effects also on animals. In this study, we investigated the direct toxic effects of a glyphosate-based herbicide (GBH, Roundup® Bio) on (1) survival and (2) oxidative status of a non-target herbivore by using Colorado potato beetles (Leptinotarsa decemlineata), originating from Poland and USA, as model species. Larvae were randomly divided into three groups: (1) high concentration (100% Roundup Bio, 360 g/l), (2) low concentration (1.5% Roundup Bio) and (3) control group (water). Larvae were exposed to Roundup for different time periods: 2 h, 24 h, 48 h, 72 h and 96 h. Larval survival decreased in the group treated with high concentration of GBH compared to controls, whereas the low concentration group did not differ from the control group. GBH treatment had no association with oxidative status biomarkers (i.e. catalase, superoxide dismutase, glutathione-S-transferase, glutathione and glutathione related enzymes), but increased lipid hydroperoxide levels after 2 h exposure, suggesting increased oxidative damage soon after the exposure. Larvae of different origin also differed in their oxidative status, indicating population-dependent differences in antioxidant defence system. Environmentally relevant concentrations of GBH are not likely to affect larval survival, but high concentrations can reduce survival and increase oxidative damage of non-target herbivores. Also, populations of different origin and pesticide usage history can differ in their tolerance to GBH.

Rasoolizadeh A, Goulet MC, Guay JF, Cloutier C, Michaud D. J Insect Physiol. 2018;106:125-133. doi: 10.1016/j.jinsphys.2017.03.001.

Herbivorous insects use complex protease complements to process plant proteins, useful to adjust their digestive functions to the plant diet and to elude the antidigestive effects of dietary protease inhibitors. We here assessed whether basic profiles and diet-related adjustments of the midgut protease complement may vary among populations of the insect herbivore Colorado potato beetle (Leptinotarsa decemlineata). Two laboratory colonies of this insect were used as models, derived from insect samples collected in potato fields ∼1200 km distant from each other in North America. Synchronized 4th-instar larvae reared on potato were kept on this plant, or switched to tomato or eggplant, to compare their midgut cathepsin activities and content of intestain Cys proteases under different diet regimes. Cathepsin D activity, cathepsin L activity, cathepsin B activity and total intestain content shortly after larval molting on potato leaves were about two times lower in one population compared to the other. By comparison, cathepsin D activity, cathepsin B activity, total intestain content and relative abundance of the most prominent intestain families were similar in the two populations after three days regardless of the plant diet, unlike cathepsin L activity and less prominent intestain families showing population-associated variability. Variation in Cys protease profiles translated into the differential efficiency of a Cys protease inhibitor, tomato cystatin SlCYS8, to inhibit cathepsin L activity in midgut extracts of the two insect groups. Despite quantitative differences, SlCYS8 single variants engineered to strongly inhibit Cys proteases showed improved potency against cathepsin L activity of either population. These data suggest the feasibility of designing cystatins to control L. decemlineata that are effective against different populations of this insect. They underline, on the other hand, the practical relevance of considering natural variability of the protease complement among L. decemlineata target populations, eventually determinant in the success or failure of cystatin-based control strategies on a large-scale basis.

QingYu X, QingWei M, Pan D, WenChao G, GuoQing L. Insect Biochem Mol Biol. 2018;94:50-60. doi: 10.1016/j.ibmb.2017.09.012.

Hormone receptor 4 (HR4) is involved in the regulation of 20-hydroxyecdysone (20E) biosynthesis and the mediation of 20E signaling during larval-pupal transition in a holometabolan Drosophila melanogaster, whereas it acts as a repressor in 20E-responsive transcriptional cascade in a hemimetabolan, Blattella germanica. Here we characterized two HR4 splicing variants, LdHR4X1 and LdHR4X2, in a coleopteran Leptinotarsa decemlineata. LdHR4X1 was highly expressed in the prothoracic gland and epidermis while LdHR4X2 was abundantly transcribed in the nervous system. In vivo results showed that both prothoracicotropic hormone and 20E pathways transcriptionally regulated LdHR4, in an isoform-dependent pattern. RNA interference of LdHR4 at the final (fourth) larval instar, in contrast to the second- and third-instar periods, enhanced the expression of two ecdysteroidogenesis genes, increased 20E titer, upregulated transcription of five 20E-response genes, and reduced the mRNA level of Fushi tarazu-factor 1 (FTZ-F1). As a result, the fourth-instar LdHR4 RNAi larvae exhibited accelerated development and reduced body weight. Moreover, knockdown of LdHR4 at the fourth instar resulted in larval lethality and impaired pupation. Feeding of pyriproxyfen (a mimic of juvenile hormone) or silencing of a juvenile hormone degrading enzyme gene restored the normal course of ecdysteroidogenesis, duration of larval development, and body weight in fourth-instar LdHR4 RNAi larvae. The treatment partially suppressed the larval mortality but not the failure to pupate. The dual role of HR4 during larval-pupal metamorphosis appears to be evolutionarily conserved among holometabolans.

Shi JF, QK Sun, LL Mu, WC Guo, GQ Li. Appl Entomol Zool. 2017;52(1):37-49. doi: 10.1007/s13355-016-0451-2.

Trehalose is used primarily for the metabolic production of ATP energy and carbon sources. Its metabolic availability is regulated by trehalase (TRE). In the present paper, three TRE genes were identified in Leptinotarsa decemlineata (Say), and designated LdTRE1a, LdTRE1b, and LdTRE2 according to their Tribolium homologues. Within the first, second, and third larval instars, the expression levels of LdTREs were high just before and right after the molt, and were low in the mid instar. In the fourth larval instar, two peaks occurred at 24 h after ecdysis and at the wandering stage. In vitro culture of midguts and an in vivo bioassay revealed that 20-hydroxyecdysone (20E) stimulated the expression of the three LdTREs. Conversely, a reduction of 20E by RNA interference (RNAi) of a prothoracicotropic hormone receptor gene LdTorso and an ecdysteroidogenesis gene LdSHD repressed the expression of the three LdTREs. Moreover, disruption of 20E signaling by RNAi of LdEcR, LdE75, and LdFTZ-F1 reduced the transcript levels of the three LdTREs. Similarly, in vitro culture and an in vivo bioassay showed that exogenous juvenile hormone (JH) or JH analogue methoprene and pyriproxyfen activated LdTREs expression. An increase of endogenous JH by RNAi of an allatostatin gene LdAS-C enhanced the transcription. In contrast, a decrease in JH by RNAi of a JH biosynthesis gene LdJHAMT downregulated the transcription. Moreover, knockdown of LdILP2 repressed the expression of the three LdTREs. The content of hemolymph trehalose was increased while the concentration of glucose was decreased. It seems that the transcription of LdTRE1a, LdTRE1b, and LdTRE2 is regulated by 20E, JH, and ILP signaling pathways in Leptinotarsa decemlineata.

Meng Q, Q Xu, P Deng, K. Fu, W Guo, G Li Insect Biochem Mol Biol. 2018;97:1-9. doi: 10.1016/j.ibmb.2018.04.003.

In the tobacco hornworm Manduca sexta, juvenile hormone (JH) is critical for the control of species-specific size. However, whether the basic helix-loop-helix/Per-Arnt-Sim domain receptor methoprene-tolerant (Met) is involved remains unconfirmed. In the present paper, we found that RNA interference (RNAi)-aided knockdown of Met gene (LdMet) lowered the larval and pupal fresh weights and shortened the larval development period in the Colorado potato beetle Leptinotarsa decemlineata. Dietary introduction of JH into the LdMet RNAi larvae rescued neither the decreased weights nor the reduced development phase, even though JH ingestion by control larvae extended developmental time and caused large pupae. Moreover, the transcript levels of five genes involved in prothoracicotropic hormone and cap 'n' collar isoform C/Kelch-like ECH associated protein 1 pathways were upregulated in the LdMet silenced larvae. Ecdysteroidogenesis was thereby activated; 20-hydroxyecdysone (20E) titer was increased; and 20E signaling pathway was elicited in the LdMet RNAi larvae. Therefore, JH, acting through its receptor Met, inhibits PTTH production and release before the attainment of critical weight. Once the critical weight is reached, JH production and release are averted; and the hemolymph JH is removed. The elimination of JH allows the brain to release PTTH. PTTH subsequently stimulates ecdysteroid biosynthesis and release to start larval-pupal transition in L. decemlineata.

Wu JJ, Chen ZC, Wang YW, Fu KY, Guo WC, Li GQ. Insect Mol Biol. 2019;28(1):52-64.

Insect chitin deacetylases (CDAs) are carbohydrate esterases that catalyze N-deacetylation of chitin to generate chitosan, a process essential for chitin organization and compactness during the formation of extracellular chitinous structure. Here we identified two CDA2 splice variants (LdCDA2a and LdCDA2b) in Leptinotarsa decemlineata. Both splices were abundantly expressed in larval foregut, rectum, and epidermis; their levels peaked immediately before ecdysis within each instar. In vivo results revealed that the two isoforms transcriptionally responded, positively and negatively respectively, to 20-hydroxyecdysone and juvenile hormone signaling pathways. RNA interference (RNAi)-aided knockdown of the two LdCDA2 variants (hereafter LdCDA2) or LdCDA2b, rather than LdCDA2a, resulted in three negative effects. First, foliage consumption was significantly reduced, larval developing period was lengthened, and larval growth was retarded. Second, chitin contents were reduced, whereas glucose, trehalose, and glycogen contents were increased in the LdCDA2 and LdCDA2b RNAi larvae. Third, approximately 20% of LdCDA2 and LdCDA2b RNAi larvae were trapped within the exuviae and finally died. About 60% of the abnormal pupae died as pharate adults. Around 20% of the RNAi pupae emerged as deformed adults, with small size and wrinkled wings. These adults eventually died within 1 week after molting. Our results reveal that knockdown of CDA2 affects chitin accumulation. Consequently, LdCDA2 may be a potential target for control of L. decemlineata larvae.

Chertkova EA, Grizanova EV, Dubovskiy IM. J Invertebr Pathol. 2018;153:203-206. doi: 10.1016/j.jip.2018.02.020.

Dopamine (DA) is known as a hormone neurotransmitter molecule involved in several stress reactions in both vertebrates and invertebrates. Following infections with the fungi Metarhizium robertsii or Beauveria bassiana and the bacterium Bacillus thuringiensis, dopamine the concentration was measured at different time points in the haemolymph of the Colorado potato beetle, Leptinotarsa decemlineata and the larvae of the greater wax moth Galleria mellonella. The infection with M. robertsii increased (4 to 12-fold) DA concentrations in the haemolymph of the potato beetle larvae and the oral infection by B. thuringiensis also lead to a 30 and 45-fold increase. During infection of the greater wax moth larvae with Beauveria bassiana and B. thuringiensis DA increased 4 to 20-fold and about 2 to 2,5-fold respectively, compared to non-infected insects. The relative DA concentrations varied between the two insects and depended on the pathogens and post infection time.

Clements J, Sanchez-Sedillo B, Bradfield CA, Groves RL. PLoS ONE. 2018;13(10):e0205881. doi: 10.1371/journal.pone.0205881.

The Colorado potato beetle, Leptinotarsa decemlineata (Say), is an agricultural pest of commercial potatoes in parts of North America, Europe, and Asia. Plant protection strategies within this geographic range employ a variety of pesticides to combat not only the insect, but also plant pathogens. Previous research has shown that field populations of Leptinotarsa decemlineata have a chronological history of resistance development to a suite of insecticides, including the Group 4A neonicotinoids. The aim of this study is to contextualize the transcriptomic response of Leptinotarsa decemlineata when exposed to the neonicotinoid insecticide imidacloprid, or the fungicides boscalid or chlorothalonil, in order to determine whether these compounds induce similar detoxification mechanisms. We found that chlorothalonil and imidacloprid induced similar patterns of transcript expression, including the up-regulation of a cytochrome p450 and a UDP-glucuronosyltransferase transcript, which belong to protein families associated with xenobiotic metabolism. Further, transcriptomic responses varied among individuals within the same treatment group, suggesting individual insects' responses vary within a population and may cope with chemical stressors in a variety of manners.

Ruiz-Arroyo V, García-Robles I, Ochoa-Campuzano C, et al. Insect Mol Biol. 2017;26(2):204-214. doi: 10.1111/imb.12285.

Bacillus thuringiensis parasporal crystal proteins (Cry proteins) are insecticidal pore-forming toxins that bind to specific receptor molecules on the brush border membrane of susceptible insect midgut cells to exert their toxic action. In the Colorado potato beetle (CPB), a coleopteran pest, we previously proposed that interaction of Cry3Aa toxin with a CPB ADAM10 metalloprotease is an essential part of the mode of action of this toxin. Here, we annotated the gene sequence encoding an ADAM10 metalloprotease protein (CPB-ADAM10) in the CPB genome sequencing project, and using RNA interference gene silencing we demonstrated that CPB-ADAM10 is a Cry3Aa toxin functional receptor in CPB. Cry3Aa toxicity was significantly lower in CPB-ADAM10 silenced larvae and in vitro toxin pore-forming ability was greatly diminished in lipid planar bilayers fused with CPB brush border membrane vesicles (BBMVs) prepared from CPB-ADAM10 silenced larvae. In accordance with our previous data that indicated this toxin was a substrate of ADAM10 in CPB, Cry3Aa toxin membrane-associated proteolysis was altered when CPB BBMVs lacked ADAM10. The functional validation of CPB-ADAM10 as a Cry3Aa toxin receptor in CPB expands the already recognized role of ADAM10 as a pathogenicity determinant of pore-forming toxins in humans to an invertebrate species.

Meng Q, Q Xu, T Zhu, L Jin, K Fu, W Guo, G Li. PLoS Genetics. 2019;15(1):e1007423. doi: 10.1371/journal.pgen.1007423.

Many animals exploit several niches sequentially during their life cycles, a fitness referred to as ontogenetic niche shift (ONS). To successfully accomplish ONS, transition between development stages is often coupled with changes in one or more primitive, instinctive behaviors. Yet, the underlining molecular mechanisms remain elusive. We show here that Leptinotarsa decemlineata larvae finish their ONS at the wandering stage by leaving the plant and pupating in soil. At middle wandering phase, larvae also switch their phototactic behavior, from photophilic at foraging period to photophobic. We find that enhancement of juvenile hormone (JH) signal delays the phototactic switch, and vise verse. Moreover, RNA interference (RNAi)-aided knockdown of LdPTTH (prothoracicotropic hormone gene) or LdTorso (PTTH receptor gene) impairs avoidance response to light, a phenotype nonrescuable by 20-hydroxyecdysone. Consequently, the RNAi beetles pupate at the soil surface or in shallow layer of soil, with most of them failing to construct pupation chambers. Furthermore, a combination of depletion of LdPTTH/LdTorso and disturbance of JH signal causes no additive effects on light avoidance response and pupation site selection. Finally, we establish that TrpA1 (transient receptor potential (TRP) cation channel) is necessary for light avoidance behavior, acting downstream of PTTH. We conclude that JH/PTTH cascade concomitantly regulates metamorphosis and the phototaxis switch, to drive ONS of the wandering beetles from plant into soil to start the immobile pupal stage.