Weber, D.C., Duan, J.J. & Haber, A.I. 2020 J Pest Sci https://doi.org/10.1007/s10340-019-01181-x

For Colorado potato beetle, an integrated approach including semiochemicals and other nonpesticidal tactics is essential to sustainable management. A volatile aggregation pheromone produced by male adult beetles is attractive to both females and males. Yet earlier research also indicates that males respond to a yet-unidentified female-produced sex pheromone. We investigated male Colorado potato beetle behavior on potato plants that had been exposed to females only, males only, mixed-sex groups, or no beetles (clean plants). During observation, these plants hosted no beetles except for the single experimental male beetle. These males (previously mated or unmated) responded very differently to female-exposed plants, spending longer time on these plants, undertaking characteristic active searching behavior, exploring more leaves per plant, and moving more rapidly between leaves, compared to male-exposed or unexposed plants. When presented with a three-way choice, males spent about five times longer on the female-exposed foliage, compared to either male-exposed or clean leaves. Searching parameters differed between mated and unmated males, but both showed similar reactions to female-exposed plants; there was little to no statistical interaction between male mated condition and plant treatment. Results strongly indicate the presence of a persistent female-produced pheromone significantly influencing male searching behavior and between-plant movement.

Hunt ER, J., Rondon SI.  Journal of Applied Remote Sensing. 2017;11(2):026013.

Colorado potato beetle (CPB) adults and larvae devour leaves of potato and other solanaceous crops and weeds, and may quickly develop resistance to pesticides. With early detection of CPB damage, more options are available for precision integrated pest management, which reduces the amount of pesticides applied in a field. Remote sensing with small unmanned aircraft systems (sUAS) has potential for CPB detection because low flight altitudes allow image acquisition at very high spatial resolution. A five-band multispectral sensor and up-looking incident light sensor were mounted on a six-rotor sUAS, which was flown at altitudes of 60 and 30 m in June 2014. Plants went from visibly undamaged to having some damage in just 1 day. Whole-plot normalized difference vegetation index (NDVI) and the number of pixels classified as damaged (0.70 ≤ NDVI ≤0.80) were not correlated with visible CPB damage ranked from least to most. Area of CPB damage estimated using object-based image analysis was highly correlated to the visual ranking of damage. Furthermore, plant height calculated using structure-from-motion point clouds was related to CPB damage, but this method required extensive operator intervention for success. Object-based image analysis has potential for early detection based on high spatial resolution sUAS remote sensing.