Skip to content

Ruiz-Arroyo V, García-Robles I, Ochoa-Campuzano C, et al. Insect Mol Biol. 2017;26(2):204-214. doi: 10.1111/imb.12285.

Bacillus thuringiensis parasporal crystal proteins (Cry proteins) are insecticidal pore-forming toxins that bind to specific receptor molecules on the brush border membrane of susceptible insect midgut cells to exert their toxic action. In the Colorado potato beetle (CPB), a coleopteran pest, we previously proposed that interaction of Cry3Aa toxin with a CPB ADAM10 metalloprotease is an essential part of the mode of action of this toxin. Here, we annotated the gene sequence encoding an ADAM10 metalloprotease protein (CPB-ADAM10) in the CPB genome sequencing project, and using RNA interference gene silencing we demonstrated that CPB-ADAM10 is a Cry3Aa toxin functional receptor in CPB. Cry3Aa toxicity was significantly lower in CPB-ADAM10 silenced larvae and in vitro toxin pore-forming ability was greatly diminished in lipid planar bilayers fused with CPB brush border membrane vesicles (BBMVs) prepared from CPB-ADAM10 silenced larvae. In accordance with our previous data that indicated this toxin was a substrate of ADAM10 in CPB, Cry3Aa toxin membrane-associated proteolysis was altered when CPB BBMVs lacked ADAM10. The functional validation of CPB-ADAM10 as a Cry3Aa toxin receptor in CPB expands the already recognized role of ADAM10 as a pathogenicity determinant of pore-forming toxins in humans to an invertebrate species.

Wraight SP, Ramos ME. Biocontrol Sci Technol. 2017;27(3):348-363. doi: 10.1080/09583157.2017.1291904.

The effects of inoculation method on efficacy of two formulations of Beauveria bassiana strain GHA against Colorado potato beetle larvae were investigated. Under dry greenhouse conditions, ca. 58% mortality was observed among second-instar larvae exposed directly to sprays of B. bassiana conidia, whereas mortality among larvae exposed to similarly treated foliage (either leaf dorsal or ventral surfaces) was <10%. Mortality was ca. 64% among larvae exposed to both direct sprays and foliar spray deposits. Equivalent rates of mortality were observed among larvae treated with a clay-based wettable powder versus an emulsifiable oil-based formulation of B. bassiana conidia; however, this was observed despite application of an approximately 40% greater dose of WP-formulated conidia, indicating greater efficacy of the emulsifiable oil formulation. These results suggest that, under dry conditions, potato beetle larvae do not readily acquire an effective dose of conidia from treated foliage and that development of improved application technologies to more effectively target the larvae may ultimately prove more beneficial than development of formulations with greater foliar persistence.

Gaddelapati SC, Kalsi M, Roy A, Palli SR. Insect Biochem Mol Biol. 2018;99:54-62. doi: 10.1016/j.ibmb.2018.05.006.

The Colorado potato beetle (CPB), Leptinotarsa decemlineata developed resistance to imidacloprid after exposure to this insecticide for multiple generations. Our previous studies showed that xenobiotic transcription factor, cap 'n' collar isoform C (CncC) regulates the expression of multiple cytochrome P450 genes, which play essential roles in resistance to plant allelochemicals and insecticides. In this study, we sought to obtain a comprehensive picture of the genes regulated by CncC in imidacloprid-resistant CPB. We performed sequencing of RNA isolated from imidacloprid-resistant CPB treated with dsRNA targeting CncC or gene coding for green fluorescent protein (control). Comparative transcriptome analysis showed that CncC regulated the expression of 1798 genes, out of which 1499 genes were downregulated in CncC knockdown beetles. Interestingly, expression of 79% of imidacloprid induced P450 genes requires CncC. We performed quantitative real-time PCR to verify the reduction in the expression of 20 genes including those coding for detoxification enzymes (P450s, glutathione S-transferases, and esterases) and ABC transporters. The genes coding for ABC transporters are induced in insecticide resistant CPB and require CncC for their expression. Knockdown of genes coding for ABC transporters simultaneously or individually caused an increase in imidacloprid-induced mortality in resistant beetles confirming their contribution to insecticide resistance. These studies identified CncC as a transcription factor involved in regulation of genes responsible for imidacloprid resistance. Small molecule inhibitors of CncC or suppression of CncC by RNAi could provide effective synergists for pest control or management of insecticide resistance.


Clements J, Schoville S, Clements N, Chapman S, Groves RL. Pest Manag Sci. 2017;73(3):641-650. doi: 10.1002/ps.4480.

BACKGROUND: The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a major agricultural pest of commercial potatoes. Pest managers use a combination of control tactics to limit populations, including multiple insecticides. Finding a window of insecticide susceptibility and understanding genetic responses to insecticide exposure during a growing season may provide novel management recommendations for L. decemlineata. RESULTS: We examined temporal changes (during one growing season) in phenotypic response between a susceptible population and an imidacloprid-resistant population. Beetles remained more susceptible to imidacloprid in the susceptible population throughout the growing season. Estimated mean LC50 values varied throughout the growing season in the resistant population, with increased susceptibility among overwintered and recently emerged adult beetles compared with a heightened level of resistance in the second generation. RNA transcript abundance was compared among multiple time points through the growing season, showing that cuticular proteins and cytochrome p450s were highly upregulated during peaks of measured resistance. CONCLUSION: Temporal variation in imidacloprid susceptibility of L. decemlineata was observed, which included early time points of susceptibility and later peaks in resistance. Heightened resistance occurred during the second generation and correlated to increased transcript abundance of multiple mechanisms of resistance, including multiple cuticular protein and cytochrome p450 transcripts.

Weintraub R, Garrido E, Poveda K. American Journal of Potato Research. 2018;95(6):642-649. doi: 10.1007/s12230-018-9670-0.

Tolerance is a type of defense that allows plants to attenuate the negative effects of herbivory. Tolerance has been shown to be context-dependent, contingent on abiotic and biotic factors such as nutrients and plant age. Here, we determine the simultaneous effect of herbivory at different phenological stages and nitrogen regimen on the potato's ability to tolerate herbivory. We subjected young and blooming plants of two potato varieties to 50% injury by Colorado Potato Beetle in low and high nitrogen environments to determine their effects on tuber yield and plant tolerance. All plants in the high nitrogen treatment expressed higher yield and tolerance compared to those in the low nitrogen treatment. Control plants expressed higher yield than plants in either herbivory treatment. There was a variety by phenological stage of herbivory interaction showing that phenological-based tolerance expression within species is genotype dependent.

Meng Q, Q Xu, T Zhu, L Jin, K Fu, W Guo, G Li. PLoS Genetics. 2019;15(1):e1007423. doi: 10.1371/journal.pgen.1007423.

Many animals exploit several niches sequentially during their life cycles, a fitness referred to as ontogenetic niche shift (ONS). To successfully accomplish ONS, transition between development stages is often coupled with changes in one or more primitive, instinctive behaviors. Yet, the underlining molecular mechanisms remain elusive. We show here that Leptinotarsa decemlineata larvae finish their ONS at the wandering stage by leaving the plant and pupating in soil. At middle wandering phase, larvae also switch their phototactic behavior, from photophilic at foraging period to photophobic. We find that enhancement of juvenile hormone (JH) signal delays the phototactic switch, and vise verse. Moreover, RNA interference (RNAi)-aided knockdown of LdPTTH (prothoracicotropic hormone gene) or LdTorso (PTTH receptor gene) impairs avoidance response to light, a phenotype nonrescuable by 20-hydroxyecdysone. Consequently, the RNAi beetles pupate at the soil surface or in shallow layer of soil, with most of them failing to construct pupation chambers. Furthermore, a combination of depletion of LdPTTH/LdTorso and disturbance of JH signal causes no additive effects on light avoidance response and pupation site selection. Finally, we establish that TrpA1 (transient receptor potential (TRP) cation channel) is necessary for light avoidance behavior, acting downstream of PTTH. We conclude that JH/PTTH cascade concomitantly regulates metamorphosis and the phototaxis switch, to drive ONS of the wandering beetles from plant into soil to start the immobile pupal stage.

Arain MS, Wan P, Shakeel M, et al. Phytoparasitica. 2017;45(1):103-111. doi: 10.1007/s12600-016-0560-z.
The speed of toxic action of an insecticide is an indicator for control efficacy and has considerable practical importance. For agricultural pest control, fast-acting is an important feature for an insecticide to consistently reduce the amount of feeding damage. Butene-fipronil is a novel compound obtained via the structural modification of fipronil. However, information about the toxicity and speed of toxic action is still limited. In the present paper, we compared the toxic feature of butene-fipronil with seven other insecticides, of which imidacloprid and abamectin are slow-acting insecticides, and acephate, endosulfan, methomyl, α-cypermethrin and spinosad are fast-acting insecticides. We found that the contact and stomach toxicities of butene-fipronil were among the highest ever estimated to Leptinotarsa decemlineata and Drosophila melanogaster. The speed of toxic action of butene-fipronil was determined using median lethal time (LT50) at a dose (concentration) equivalent to LD80 values. For L. decemlineata, the values for butene-fipronil, imidacloprid, abamectin, acephate, endosulfan, methomyl, cypermethrin and spinosad were calculated to be 39.9, 36.5, 37.5, 20.2, 22.4, 23.8, 16.4 and 23.1 h, respectively. Those for D. melanogaster were 29.8, 31.5, 29.4, 14.0, 20.3, 18.1, 13.5, and 20.1 h, respectively. ANOVA analysis showed that butene-fipronil, imidacloprid, abamectin had similar LT50 values, whereas acephate, endosulfan, methomyl, spinosad and cypermethrin had comparable LT50 values. Thus, butene-fipronil belongs to slow-acting insecticides. Our results provide more empirical information for butene-fipronil potential application.

Maliszewska J, Tęgowska E. Int J Pest Manage. 2017;63(4):331-340.

The effectiveness of insecticides differs with changes in temperature, but insecticide toxicities are determined at constant temperatures. Constant thermal conditions do not occur in the field, where insects can change their behaviors to achieve a preferred temperature. The aim of this study was to assess whether the choice of ambient temperature affects the mortality rate of intoxicated firebugs and Colorado potato beetles. The insects' mortality following insecticide exposure was monitored at constant temperatures (15, 25, and 35°C) as well as in a thermal gradient system, where the insects could freely select their preferred ambient temperature. Firebugs treated with oxadiazine showed 58% higher mortality when held at a constant temperature post-treatment compared to mortality levels seen when able to choose a preferred temperature in a thermal gradient. Similar results were seen in Colorado potato beetles treated with oxadiazine (15%-33% higher mortality in constant vs. preferred temperature) or organophosphate (36% higher mortality in constant vs. preferred temperature). The insects' ability to mitigate the impacts of pesticide exposure by selecting more beneficial thermal conditions is an important consideration for pest management. Therefore, the application rates of insecticides used under field conditions should be additionally analyzed to take this factor into account.



Xu Q, Meng Q, Shi J, Deng P, Guo W, Li G. Pestic Biochem Physiol. 2017;143:173-180. doi: 10.1016/j.pestbp.2017.07.010.

To accomplish consistent, long-term, integrated management (IPM) of the Colorado potato beetle, Leptinotarsa decemlineata (Say), research assessing the potential of novel, IPM-compatible insecticides is essential. Novaluron is a potent benzoylurea insecticide. In the present paper, we found that novaluron ingestion by the fourth-instar larvae inhibited foliage consumption, reduced larval fresh weight, and delayed development period, in a dose dependent manner. Most of the resulting larvae fail to pupate, and died at prepupae stage, with larvicidal activity comparable with those of cyhalothrin and spinosad but lower than those of fipronil and abamectin. Moreover, many surviving pupae that fed novaluron failed to emerge as adults, in a dose dependent pattern. Furthermore, feeding of novaluron significantly decreased chitin contents in body carcass (without midgut) and integument specimen, whereas the chitin concentration in the midgut peritrophic matrix was not affected. Furthermore, uridine diphosphate-N-acetylglucosamine-pyrophosphorylase gene (LdUAP1) and chitin synthase Aa (LdChSAa), which were mainly responsible for chitin biosynthesis in ectodermally-derived tissues, were suppressed and activated respectively after novaluron ingestion. Therefore, novaluron is an effective benzoylurea insecticide to L. decemlineata fourth-instar larvae. It inhibited chitin biosynthesis in ectodermally-derived tissues, disrupted ecdysis, impaired pupation and adult emergence, and led to death in juvenile life stages.

Crossley MS, Chen YH, Groves RL, Schoville SD. Mol Ecol. 2017;26(22):6284-6300. doi: 10.1111/mec.14339.

The ability of insect pests to rapidly and repeatedly adapt to insecticides has long challenged entomologists and evolutionary biologists. Since Crow's seminal paper on insecticide resistance in 1957, new data and insights continue to emerge that are relevant to the old questions about how insecticide resistance evolves: such as whether it is predominantly mono- or polygenic, and evolving from standing vs. de novo genetic variation. Many studies support the monogenic hypothesis, and current management recommendations assume single- or two-locus models. But inferences could be improved by integrating data from a broader sample of pest populations and genomes. Here, we generate evidence relevant to these questions by applying a landscape genomics framework to the study of insecticide resistance in a major agricultural pest, Colorado potato beetle, Leptinotarsa decemlineata (Say). Genome-environment association tests using genomic variation from 16 populations spanning gradients of landscape variables associated with insecticide exposure over time revealed 42 strong candidate insecticide resistance genes, with potentially overlapping roles in multiple resistance mechanisms. Measurements of resistance to a widely used insecticide, imidacloprid, among 47 L. decemlineata populations revealed heterogeneity at a small (2 km) scale and no spatial signature of origin or spread throughout the landscape. Analysis of nucleotide diversity suggested candidate resistance loci have undergone varying degrees of selective sweeps, often maintaining similar levels of nucleotide diversity to neutral loci. This study suggests that many genes are involved in insecticide resistance in L. decemlineata and that resistance likely evolves from both de novo and standing genetic variation.