Wang Y., Y. Li, G. Li, P. Wan, C. Li. J Econ Entomol. 2019;112(2):912-923. doi: 10.1093/jee/toy396.
Structural cuticular proteins (CPs) are the primary components of insect cuticle, linings of salivary gland, foregut, hindgut and tracheae, and midgut peritrophic membrane. Variation of CPs in insect cuticle can cause penetration resistance to insecticides. Moreover, depletion of specific CP by RNA interference may be a suitable way for the development of potential pest control traits. Leptinotarsa decemlineata (Say) CPs are poorly characterized at present, and therefore, we mined the genome and transcriptome data to better annotate and classify L. decemlineata CPs in this study, by comparison with the annotated CPs of Tribolium castaneum Browse (Coleoptera: Tenebrionidae). We identified 175 CP genes. Except one miscellaneous CP with an 18-amino acid motif, these CPs were classified into 7 families based on motifs and phylogenetic analyses (CPs with a Rebers and Riddiford motif, CPR; CPs analogous to peritrophins, CPAP3 and CPAP1; CPs with a tweedle motif, TWDL; CPs with a 44-amino acid motif, CPF; CPs that are CPF-like, CPFL; and CPs with two to three copies of C-X5-C motif, CPCFC). Leptinotarsa decemlineata CPRs could be categorized into three subfamilies: RR-1 (50), RR-2 (85), and RR-3 (2). The RR-1 proteins had an additional motif with a conserved YTADENGF sequence. The RR-2 members possessed a conserved RDGDVVKG region and three copes of G-x(3)-VV. Few genes were found in TWDL (9), CPAP1 (9), CPAP3 (8), CPF (5), CPFL (4), and CPCFC (2) families. The findings provide valuable information to explore molecular modes of penetration resistance to insecticides and to develop dsRNA-based control method in L. decemlineata.