Skip to content

Yamano Y, Sasaki H, Wada A. Chem Pharm Bull. 2017;65(10):940-944. doi: 10.1248/cpb.c17-00462.

A mild deacylation method for 3,5-dinitrobenzoates using methanolic solutions of amines, such as dialkylamines, was developed. The method's versatility was confirmed by applying it to synthesizing a key intermediate for Colorado potato beetle pheromone.



López-Galiano MJ, Ruiz-Arroyo V, Fernández-Crespo E, et al. J Plant Physiol. 2017;215:59-64. doi: 10.1016/j.jplph.2017.04.013.

Insect-plant interactions are governed by a complex equilibrium between the mechanisms through which plant recognize insect attack and orchestrate downstream signaling events that trigger plant defense responses, and the mechanisms by which insects overcome plant defenses. Due to this tight and dynamic interplay, insight into the nature of the plant defense response can be gained by analyzing changes in the insect herbivores digestive system upon plant feeding. In this work we have identified a Solanum melongena miraculin-like protease inhibitor in the midgut juice of Colorado potato larvae feeding on eggplant plants treated with the natural inducer of plant defenses hexanoic acid. We analyzed the corresponding gene expression by qRT-PCR and our results showed that this eggplant miraculin-like gene enhanced induction contributes to the hexanoic acid priming effect in this Solanaceae species. Moreover, our data evidencing that OPDA might be involved in this gene regulation highlights its potential as biomarker in eggplant plant responses to stress mediated this oxylipin signaling pathway.

Wetzel WC, Thaler JS. Oecologia. 2018;186(2):483-493. doi: 10.1007/s00442-017-4034-x.

A consequence of plant diversity is that it can allow or force herbivores to consume multiple plant species, which studies indicate can have major effects on herbivore fitness. An underappreciated but potentially important factor modulating the consequences of multi-species diets is the extent to which herbivores can choose their diets versus being forced to consume specific host-plant sequences. We examined how host-selection behavior alters the effects of multi-species diets using the Colorado potato beetle (Leptinotarsa decemlineata) and diets of potato plants (Solanum tuberosum), tomato plants (S. lycopersicum), or both. When we gave beetles simultaneous access to both plants, allowing them to choose their diets, their final mass was within 0.1% of the average mass across both monocultures and 43.6% lower than mass on potato, the superior host in monoculture. This result indicates these beetles do not benefit from a mixed diet, and that the presence of tomato, an inferior but suitable host, makes it difficult to use potato. In contrast, when we forced beetles to switch between host species, their final mass was 37.8% less than the average of beetles fed constant diets of either host species and within 3.5% of the mass on tomato even though they also fed on potato. This indicates preventing host-selection behavior magnified the negative effects of this multi-species diet. Our results imply that ecological contexts that constrain host-selection or force host-switches, such as communities with competition or predation, will lead plant species diversity to reduce the performance of insect herbivores.


Booth E, Alyokhin A, Pinatti S.  Insect Science. 2017;24(2):295-302. doi: 10.1111/1744-7917.12286.

Cannibalism, or intraspecific predation, can play a major role in changing individual fitness and population processes. In insects, cannibalism frequently occurs across life stages, with cannibals consuming a smaller or more vulnerable stage. Predation of adult insects on one another is considered to be uncommon. We investigated adult cannibalism in the Colorado potato beetle, Leptinotarsa decemlineata (Say), which is an oligophagous herbivore specializing on plants in family Solanaceae, and an important agricultural pest. Under laboratory conditions, starvation and crowding encouraged teneral adults to feed upon each other, which reduced their weight loss during the period of starvation. However, pupae were attacked and consumed before adults. Injured beetles had a higher probability of being cannibalized than intact beetles. Males were more frequently attacked than females, but that appeared to be a function of their smaller size rather than other gender-specific traits. Cannibalizing eggs at a larval stage did not affect beetle propensity to cannibalize adults at an adult stage. When given a choice between conspecific adults and mealworms, the beetles preferred to eat conspecifics. Cannibalistic behavior, including adult cannibalism, could be important for population persistence in this species.

Tryjanowski P, Sparks TH, Blecharczyk A, Małecka-Jankowiak I, Switek S, Sawinska Z. American Journal of Potato Research. 2018;95(1):26-32. doi: 10.1007/s12230-017-9611-3.

Potato Solanum tuberosum is one of the world's four most important crops. Its cultivation is steadily increasing in response to the need to feed a growing world population. The yield of potato is influenced inter alia by both climate and pests. The main defoliator pest of potato is Colorado potato beetle Leptinotarsa decemlineata. Using data from a long-term experiment (1958-2013) in western Poland, we show that increasing temperature has affected the trophic relationship between potato and Colorado potato beetle. The planting, leafing, flowering and harvest dates for potato were advanced, after controlling for different cultivars, by 2.00 days, 3.04 days, 3.80 days and 3.42 days respectively for every 1°C increase in temperature. In contrast, first treatment against Colorado potato beetle advanced by 4.66 days for every 1°C increase in temperature, and, furthermore, the number of treatments against the beetle increased by 0.204 per 1°C increase in temperature. This suggests that the beetle responds faster to increasing temperature than the plant does, but both parts of the system are probably greatly modified by farming practices.

Yoon J, Mogilicherla K, Gurusamy D, Chen X, Chereddy, S. C. R. R., Palli SR.  Proc Natl Acad Sci U S A. 2018;115(33):8334-8339. doi: 10.1073/pnas.1809381115.

RNA interference (RNAi) is being used to develop methods to control pests and disease vectors. RNAi is robust and systemic in coleopteran insects but is quite variable in other insects. The determinants of efficient RNAi in coleopterans, as well as its potential mechanisms of resistance, are not known. RNAi screen identified a double-stranded RNA binding protein (StaufenC) as a major player in RNAi. StaufenC homologs have been identified in only coleopteran insects. Experiments in two coleopteran insects, Leptinotarsa decemlineata and Tribolium castaneum, showed the requirement of StaufenC for RNAi, especially for processing of double-stranded RNA (dsRNA) to small interfering RNA. RNAi-resistant cells were selected by exposing L. decemlineata, Lepd-SL1 cells to the inhibitor of apoptosis 1 dsRNA for multiple generations. The resistant cells showed lower levels of StaufenC expression compared with its expression in susceptible cells. These studies showed that coleopteran-specific StaufenC is required for RNAi and is a potential target for RNAi resistance. The data included in this article will help improve RNAi in noncoleopteran insects and manage RNAi resistance in coleopteran insects.

Bozov PI, Georgieva YP. Natural Product Communications. 2017;12(3):327-328.

Fourteen neo-clerodane diterpenoids isolated from Scutellaria altissima (Lamiaceae) were tested for insect antifeedant activity against Leptinotarsa decemlineata Say. Potato leaf disks treated with small amounts of the compounds (concentration 1000, 100, 10 ppm) resulted in good to very good antifeedant activity. Clerodin (1), scutecyprin (11) and 11-epi-scutecolumnin C (12) showed strong feeding inhibition at 1000 ppm and exhibited significant antifeedant activity at a concentration of 100 ppm. Activity was established by calculating the feeding ratio (FR) between the consumed areas of treated disks (CTD) and control disks (CCD). For comparison, FR50 values were determined as the FR at a CCD of 50%. Structural features of the compounds associated with the changes in activity and structure-antifeedant activity relationships are discussed. For the first time the anti-feedant activity has been evaluated of neo-clerodane diterpenoids with an unusual R-configuration of the carbon atom C-11.

Hunt ER, J., Rondon SI.  Journal of Applied Remote Sensing. 2017;11(2):026013.

Colorado potato beetle (CPB) adults and larvae devour leaves of potato and other solanaceous crops and weeds, and may quickly develop resistance to pesticides. With early detection of CPB damage, more options are available for precision integrated pest management, which reduces the amount of pesticides applied in a field. Remote sensing with small unmanned aircraft systems (sUAS) has potential for CPB detection because low flight altitudes allow image acquisition at very high spatial resolution. A five-band multispectral sensor and up-looking incident light sensor were mounted on a six-rotor sUAS, which was flown at altitudes of 60 and 30 m in June 2014. Plants went from visibly undamaged to having some damage in just 1 day. Whole-plot normalized difference vegetation index (NDVI) and the number of pixels classified as damaged (0.70 ≤ NDVI ≤0.80) were not correlated with visible CPB damage ranked from least to most. Area of CPB damage estimated using object-based image analysis was highly correlated to the visual ranking of damage. Furthermore, plant height calculated using structure-from-motion point clouds was related to CPB damage, but this method required extensive operator intervention for success. Object-based image analysis has potential for early detection based on high spatial resolution sUAS remote sensing.

Crossley MS, Pélissié B, Cohen Z, Schoville SD. Great Lakes Entomol. 2017;50(3):93-97.

Egg, larval, and adult life stages of Colorado potato beetle, Leptinotarsa decemlineata (Say), were observed feeding on or attached to a previously undocumented host plant belonging to the genus Chamaesaracha in eastern Colorado on July 2017. At one site, L. decemlineata were more abundant on Chamaesaracha sp. than the accepted ancestral host plant, Solanum rostratum (Dunal). While future studies should confirm the ancestral status of the observed L. decemlineata and suitability of Chamaesaracha sp. for completion of development, our observations suggest a need for further characterization of the ancestral host range of L. decemlineata.


Tigreros, N., Norris, R. H., Wang, E. H. and Thaler, J. S. (2017) Ecol Lett. doi:10.1111/ele.12752

Theory on condition-dependent risk-taking indicates that when prey are in poor condition, their anti-predator responses should be weak. However, variation in responses resulting from differences in condition is generally considered an incidental by-product of organisms living in a heterogeneous environment. Using Leptinotarsa decemlineata beetles and stinkbug (Podisus maculiventris) predators, we hypothesised that in response to predation risk, parents improve larval nutritional condition and expression of anti-predator responses by promoting intraclutch cannibalism. We showed that mothers experiencing predation risk increase production of unviable trophic eggs, which assures provisioning of an egg meal to the newly hatched offspring. Next, we experimentally demonstrated that egg cannibalism reduces L. decemlineata vulnerability to predation by improving larval nutritional condition and expression of anti-predator responses. Intraclutch cannibalism in herbivorous insects might be a ubiquitous strategy, aimed to overcome the dual challenge of feeding on protein-limited diets while living under constant predation threat.